Measurement of azimuthal anisotropy of hadron In AuAu √sNN=39GeV at RHIC-PHENIX Yoshimasa Ikeda, RIKEN for the PHENIX collaboration ### Azimuthal anisotropy - Azimuthal anisotropy depends on initial kinematics - Elliptical particle emission angle distribution for noncentral collision - It is measured as 2nd term of Fourier series $$\frac{dN}{d\Phi} \propto 1 + 2v_2 \cos 2(\Phi - \Psi)$$ Ψ : reaction plane angle ### Particle Identified v₂ - These are characteristic for each particle specie - Heavy particle is shifted to high momentum - Meson, baryon and lon are deviated at p₋>2GeV/c ### Number of constituent quark scaling #### KET scale - Describe the momentum shift - Consistent separately meson, baryon or ion - Nq scale - Consistent at KET<0.7GeV - Collective flow of qiarks $$KE_T = \sqrt{(M^2 - P_T^2)} - M$$ ### Beam energy scan with v₂ analysis - Brake of NCQ scaling - Threshold of QGP - Search the Critical point ## Reaction Plane Resolution of PHENIX $$v_{2observe} = v_{2real} \times \langle \cos 2(\Psi_{real} - \Psi_{observe}) \rangle$$ $$\delta v_2 \sim \frac{1}{\langle \cos 2 (\Psi_{real} - \Psi_{observe}) \rangle} \times \frac{1}{\sqrt{N}}$$ reaction plane resolusion <cos ∠Ψ> # Charged hadron v_2 for $\sqrt{s_{NN}} = 39$, 62 200GeV V₂ have no difference from 200GeV to 39GeV ### PID v₂ in 39 62 p+p is slightly large at n_q scaling ### Charge separated PID v₂ Proton have larger v2 than that of anti-proton at low energy collision (39, 62GeV) ### Difference v₂ between +/- charge Proton have larger v2 than that of anti-proton at low energy collision ### Collision energy and $\triangle v_2$ - p-p are deviated at low energy collision - The v₂ difference is flat to momentum. - π- v₂ has slightly larger than π+ - K v₂ has no difference for +/- charge - Annihilation effect with large net-baryon ratio? ### Summary - V_2 of π +, π -,K+,K-,p,p,d were measured at AuAu $\sqrt{s_{NN}}$ =200, 62 and 39GeV - Proton v₂ and anti-proton v₂ are deviated - The difference increases to low energy collision - The difference is flat to momentum. - $-\pi v_2$ has slightly larger than $\pi +$ - K v₂ has no difference for +/- charge - It leaving from NCQ scaling - Due to large net-baryon baryon ratio?